Math 3
SWBAT solve equations initially without logarithms by using either similar bases or the properties of logs.
Solving equations with NO logs!

Method 1: Similar Bases

(Note: Does not work for every problem)
Step 1: Isolate the Base
Step 2: Write both sides of the equation as an exponential with like bases.
Step 3: Set exponents equal to each other.
Step 4: Solve for the unknown.

Example 1: $2^{2 x+1}=32^{x}$
Example 2: $-5+5^{3 x-9}=120$

Example3: Solve for $\mathrm{x}: 3^{2 x}=27$
You Try! Solve for x : $2^{x}=8$

Why would you need to use a log? Because the variable is in the and logs bring them down!!

Method 2: Properties of Logs

Step 1: Make sure the piece with the unknown exponent is \qquad on one side.

Step 2: \qquad the logarithm to each side.
Step 3: Use the \qquad to bring down the exponent and solve!

Example 1: Solve for x: $5^{3 x}=\frac{1}{125}$
You Try! Solve for $\mathrm{x}: 2^{5 x+1}=32$

Example 2: Solve for $\mathrm{x}: 3^{x}+5=40$
You Try! Solve for $\mathrm{x}: 2\left(6^{2 x}\right)=20$

The Many Ways to Solve a Logarithmic Equation

One Log	SWOOSH! Use when a variable is attached to the logarithm.	Solve for x : $\log _{4}(4 x-2)=3$
	Change of Base Use when the variable is not attached to the logarithm.	Solve for x : $\log _{2} 45=x$
Two Logs	Cancel the logs! Do this if and only if there is one log per side.	Solve for $x: \log _{6} x=\log _{6} 2 x-2$
	Condense the logs So that only one log appears per side. Then, decide whether to cancel, swoosh, or use change of base.	Solve for x : $3 \log _{2} x+\log _{2} 5=7$
No Logs	Add a Log! Use this if you cannot get similar bases.	Solve for x : $7^{x-3}+5=30$
	Similar Bases! Break each base down so that they are the same, cancel the bases, and work only with the exponents!	Solve for $\mathrm{x}: 25^{2 x}=125$

Practice: Complete the following problems for extra practice using the above rules for solving logarithms.

1. $2 \log _{4} \mathrm{X}=12$
2. $\log 5 x-\log 7=2$

[^0]4. $4^{3 x} \cdot 4^{2 x}=1048576$

[^0]: 3. $\log _{5} 15=3 x$
