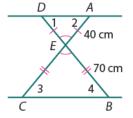
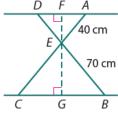
3.1.3 solutions

a. To justify $\overrightarrow{AD} \parallel \overrightarrow{BC}$, we could determine that $\angle 1 \cong \angle 4$ or $\angle 2 \cong \angle 3$. These pairs are alternate interior angles for \overrightarrow{AD} and \overrightarrow{BC} . Students might use the congruent vertical angles to explain why $\angle 1 \cong \angle 2 \cong \angle 3 \cong \angle 4$. (Note that $m\angle 1 = m\angle 2 = \frac{1}{2}(180^{\circ} - m\angle DEA) = \frac{1}{2}(180^{\circ} - m\angle CEB) =$ $m \angle 3 = m \angle 4.$

Alternatively, students could use the scale factor of $\frac{4}{7}$ relating $\triangle CEB$ to $\triangle AED$ for \overline{AE} and \overline{CE} , and \overline{DE} and \overline{BE} , along with the vertical angles to deduce that $\triangle AED \sim \triangle CEB$ (SAS Similarity Theorem). Then the alternate interior angles are congruent because they are corresponding angles of similar triangles. Thus, $\overrightarrow{AD} \parallel \overrightarrow{BC}$.





The altitudes of the similar triangles are in the same proportion as the sides. Use 4x for EF and 7x for EG.

$$4x + 7x = 90$$

$$11x = 90$$

$$x = \frac{90}{11} \approx 8.18$$

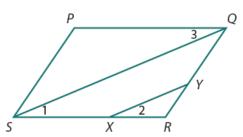
$$EF = 4x = 32.72$$
 cm

$$AF = \sqrt{40^2 - 32.72^2} \approx 23 \text{ cm}$$

$$AD = 2AF \approx 46 \text{ cm}$$

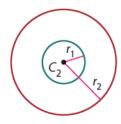
$$m\angle DAE = \sin^{-1}\left(\frac{32.72}{40}\right) \approx 55^{\circ}$$

a. Since $\overrightarrow{SQ} \parallel \overrightarrow{XY}$ and \overline{SR} is a transversal of these lines, the pair of corresponding angles ($\angle 1$ and $\angle 2$) are congruent. Also, $\angle R$ is common to both triangles. So, by the AA Similarity Theorem, $\triangle XYR \sim \triangle SQR$.



- **b.** $\angle 1 \cong \angle 3$ because they are alternate interior angles for parallel lines \overrightarrow{PQ} and \overrightarrow{SR} . In Part a, we showed that $\angle 1 \cong \angle 2$, thus $\angle 3 \cong \angle 2$. $\angle P$ and $\angle R$ are opposite angles of $\square PQRS$ and are thus congruent. So, $\triangle XYR \sim \triangle QSP$ (AA Similarity Theorem).
- **c.** The center of the size transformation is *R* and the magnitude is $\frac{SR}{XR} = \frac{QR}{YR} = \frac{SQ}{XY}.$

- 15
- a. We proved in the Reasoning and Proof unit that there is one line through a point not on a given line that is perpendicular to the given line.
- **b.** The slope of ℓ_1 is $-\frac{BC}{OB}$. The slope of ℓ_2 is $\frac{AB}{OB}$.
- **c.** Students might directly apply Applications Task 5 (page 181) to justify $\triangle AOB \sim \triangle OCB$ or show two pairs of corresponding angles are the same measure.
- **d.** We want to show that $-\frac{BC}{OB} \cdot \frac{AB}{OB} = -1$. By Part c, $\triangle AOB \sim \triangle OCB$, so $\frac{BC}{OB} = \frac{OB}{AB}$. So by substitution, $-\frac{BC}{OB} \cdot \frac{AB}{OB} = -\frac{OB}{AB} \cdot \frac{AB}{OB} = -1$.
- Make the circles concentric by translating the center C_1 of the small circle to the center C_2 of the large circle. Then the circle of radius 12 is the result of a size transformation centered at C_2 with factor $\frac{12}{5}$ of the circle with radius 5. In general, any two circles with radii r_1 and r_2 (with $r_1 \neq r_2$) are similar because they too are related by the composition of a translation and a size transformation of factor either $\frac{r_1}{r_2}$ or $\frac{r_2}{r_1}$. When $r_1 = r_2$, the circles are congruent and related by a translation.



- 37
- **a.** -4 < x < 2
- -4 -3 -2 -1 0 1 2 3 4
- **b.** $0 < x \le 2$
- **c.** No solution
- ()

Just in Time

- 39
- a. LM
- c. PL
- e. m∠L

- **b.** BC
- **d.** m∠*M*
- **f.** m∠C