\qquad

POLYNOMIAL \& ZEROS HOMEWORK

In 1-6, determine which functions are polynomials. For those that are, state the degree. For those that are not tell why not.
1.) $f(x)=5 x^{2}+4 x^{4}$
2.) $h(x)=3+\frac{1}{2} x$

Degree 4 polynomial
Degree 1 polynomial (linear)
3.) $f(x)=(x-2)^{5}$
4.) $f(x)=x^{4}+2$

Degree 5 polynomial
Degree 4 polynomial (quartic)
5.) $f(x)=(x+2)\left(\begin{array}{ll}x & 7\end{array}\right)^{2}$
6.) $f(x)=x\left(\begin{array}{ll}x & 1\end{array}\right)^{2}(x+3)^{3}$

Degree 3 polynomial (cubic)
Degree 6 polynomial

In 7-8, form a polynomial whose real zeros and degree are given.
7.) Zeros: -1, 1, 3; degree: 3; negative end behavior
8.) Zeros: $-3,0,4$; degree: 4 (the " 4 " zero has a multiplicity of 2), positive end behavior

In 9, find a polynomial function that might have the given graph. d
9.)

$$
y=x(x-1)(x-2)
$$

In 10-12, answer each part for the given polynomial.
10.) $f(x)=3(x-7)(x+3)^{2}$
a.) List each real zero and its multiplicity.
$\mathrm{x}=7$
$x=-3$; multiplicity 2
b.) Determine whether the graph crosses or touches the x-axis at each x-intercept.

Crosses at 7, touches at -3
c.) Determine the maximum number of turning points on the graph.

At most, 2 turning points (max/mins)
d.) Determine the end behavior.

$$
\begin{aligned}
x \rightarrow \infty, y & \rightarrow \infty \\
x \rightarrow-\infty, y & \rightarrow-\infty
\end{aligned}
$$

11.) $f(x)=4(x+1)\left(\begin{array}{ll}x & 2\end{array}\right)^{3}$
a.) List each real zero and its multiplicity.
$x=-1$
$x=2$; multiplicity 3
b.) Determine whether the graph crosses or touches the x-axis at each x-intercept.

Crosses at -1, crosses at 2
c.) Determine the maximum number of turning points on the graph.
At most, 3 turning points. (This one really only has 1 because of the repeated zero.)
d.) Determine the end behavior.

$$
\begin{gathered}
x \rightarrow \infty, y \rightarrow-\infty \\
x \rightarrow-\infty, y \rightarrow-\infty
\end{gathered}
$$

12.) $f(x)=(x-5)^{3}(x+4)^{2}$
a.) List each real zero and its multiplicity.
$\mathrm{x}=5$; multiplicity 3
$x=-4$; multiplicity 2
b.) Determine whether the graph crosses or touches the x-axis at each x-intercept.

Crosses at 5, touches at -4
c.) Determine the maximum number of turning points on the graph.
At most 4 turning points. (This one really only has $\mathbf{2}$ because of the repeated zeros)
d.) Determine the end behavior.

$$
\begin{aligned}
x & \rightarrow \infty, y \\
x & \rightarrow \infty \\
x-\infty, y & \rightarrow-\infty
\end{aligned}
$$

In 11-12, identify which of the graphs could be the graph of a polynomial function. For those that could, list the real zeros and state the least degree the polynomial can have. For those that could not, say why not.
13.)

$y=(x+1)(x-1)(x-2)$
Least possible degree is 3 (cubic)
14.)

NOT a polynomial because it is broken.

