Name \_\_\_\_\_

## **POLYNOMIAL & ZEROS HOMEWORK**

In 1-6, determine which functions are polynomials. For those that are, state the degree. For those that are not tell why not.

**1.)** 
$$f(x) = 5x^2 + 4x^4$$

Degree 4 polynomial

3.)  $f(x) = (x-2)^5$ 

**Degree 5 polynomial** 

5.) 
$$f(x) = (x+2)(x-7)^2$$

**Degree 3 polynomial (cubic)** 



Degree 1 polynomial (linear)

4.)  $f(x) = x^4 + 2$ 

Degree 4 polynomial (quartic)

6.) 
$$f(x) = x(x-1)^2(x+3)^3$$

## In 7-8, form a polynomial whose real zeros and degree are given.

7.) Zeros: -1, 1, 3; degree: 3; negative end behavior

8.) Zeros: -3, 0, 4; degree: 4 (the "4" zero has a multiplicity of 2), positive end behavior





In 9, find a polynomial function that might have the given graph. d

9.)

y = x(x-1)(x-2)

| 10.) $f(x) = 3(x-7)(x+3)^2$                                                                                                                                                                       | 11.) $f(x) = -4(x+1)(x-2)^3$                                                                                                                                                                                                           | 12.) $f(x) = (x-5)^3 (x+4)^2$                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a.) List each real zero and its multiplicity.                                                                                                                                                     | a.) List each real zero and its multiplicity.                                                                                                                                                                                          | a.) List each real zero and its multiplicity.                                                                                                                                                                                        |
| x = 7<br>x = -3; multiplicity 2                                                                                                                                                                   | x = -1<br>x = 2; multiplicity 3                                                                                                                                                                                                        | x = 5; multiplicity 3<br>x = -4; multiplicity 2                                                                                                                                                                                      |
|                                                                                                                                                                                                   |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      |
| b.) Determine whether the graph<br>crosses or touches the x-axis at each<br>x-intercept.                                                                                                          | b.) Determine whether the graph<br>crosses or touches the x-axis at each<br>x-intercept.                                                                                                                                               | b.) Determine whether the graph<br>crosses or touches the x-axis at each<br>x-intercept.                                                                                                                                             |
| Crosses at 7, touches at -3                                                                                                                                                                       | Crosses at -1, crosses at 2                                                                                                                                                                                                            | Crosses at 5, touches at -4                                                                                                                                                                                                          |
| crosses at 7, touches at -5                                                                                                                                                                       |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      |
| <ul> <li>c.) Determine the maximum number of turning points on the graph.</li> <li>At most, 2 turning points (max/mins)</li> <li>d.) Determine the end behavior.</li> </ul>                       | <ul> <li>c.) Determine the maximum number of turning points on the graph.</li> <li>At most, 3 turning points. (This one really only has 1 because of the repeated zero.)</li> <li>d.) Determine the end behavior.</li> </ul>           | <ul> <li>c.) Determine the maximum number of turning points on the graph.</li> <li>At most 4 turning points. (This one really only has 2 because of the repeated zeros)</li> <li>d.) Determine the end behavior.</li> </ul>          |
| c.) Determine the maximum number<br>of turning points on the graph.<br>At most, 2 turning points<br>(max/mins)<br>d.) Determine the end behavior.<br>$x \rightarrow \infty, y \rightarrow \infty$ | c.) Determine the maximum number<br>of turning points on the graph.<br>At most, 3 turning points. (This one<br>really only has 1 because of the<br>repeated zero.)<br>d.) Determine the end behavior.<br>$x \to \infty, y \to -\infty$ | c.) Determine the maximum number<br>of turning points on the graph.<br>At most 4 turning points. (This one<br>really only has 2 because of the<br>repeated zeros)<br>d.) Determine the end behavior.<br>$x \to \infty, y \to \infty$ |
| <ul> <li>c.) Determine the maximum number of turning points on the graph.</li> <li>At most, 2 turning points (max/mins)</li> <li>d.) Determine the end behavior.</li> </ul>                       | <ul> <li>c.) Determine the maximum number of turning points on the graph.</li> <li>At most, 3 turning points. (This one really only has 1 because of the repeated zero.)</li> <li>d.) Determine the end behavior.</li> </ul>           | <ul> <li>c.) Determine the maximum number of turning points on the graph.</li> <li>At most 4 turning points. (This one really only has 2 because of the repeated zeros)</li> <li>d.) Determine the end behavior.</li> </ul>          |
| c.) Determine the maximum number<br>of turning points on the graph.<br>At most, 2 turning points<br>(max/mins)<br>d.) Determine the end behavior.<br>$x \rightarrow \infty, y \rightarrow \infty$ | c.) Determine the maximum number<br>of turning points on the graph.<br>At most, 3 turning points. (This one<br>really only has 1 because of the<br>repeated zero.)<br>d.) Determine the end behavior.<br>$x \to \infty, y \to -\infty$ | c.) Determine the maximum number<br>of turning points on the graph.<br>At most 4 turning points. (This one<br>really only has 2 because of the<br>repeated zeros)<br>d.) Determine the end behavior.<br>$x \to \infty, y \to \infty$ |

In 11-12, identify which of the graphs could be the graph of a polynomial function. For those that could, list the real zeros and state the least degree the polynomial can have. For those that could not, say why not.

14.)



y = (x + 1)(x - 1)(x - 2)Least possible degree is 3 (cubic)

13.)



NOT a polynomial because it is broken.