OBJ: condense, expand, and solve logarithmic equations by using the properties of logarithms.
Since logarithms are inverses of \qquad the properties of logarithms can be derived from the properties of exponents.

- When expanding logs, we want to have multiple logs being added or subtracted from each other.
- When condensing logs, we want to end with one log and multiple variables.

Square Roots: If you ever see a square root in a problem, you must convert it to a rational exponent. *Remember - the index becomes the denominator of the exponent!
Example 7: Expand $\log _{9} \sqrt{8 z}=$

$$
\text { You Try! Expand } \log _{12} \sqrt[4]{\frac{x}{z}}=
$$

Putting it all together: Expand or condense the following logarithms using properties listed above.
a) Expand $\log _{3} x^{5} y^{7}=$
b) Expand $\log _{5} \frac{a^{3}}{b^{7}}=$
c) Expand $\log _{5} \frac{g^{6} h^{2}}{k^{5}}=$
d) Condense $5 \log _{2} x+7 \log _{2} y$
e) Condense $6 \log _{5} g-9 \log _{5} b$
f) Condense
$7 \log _{4} x+\log _{4} y-6 \log _{4} z$

I RULE: If there are multiple logs on the same side of an equation, \qquad before solving, then apply the rules from Day 1 (cancel, swoosh, or COB)
Example 8: $\log _{3} 5-\log _{3} x=\log _{3} 10$
Example 9: $4 \log _{2} x+\log _{2} 5=\log _{2} 405$

1. Expand $\log _{3} \sqrt{\frac{x^{5} y^{6}}{z^{7}}}=$
2. Condense $4 \log _{2} c+8 \log _{2} d-\log _{2} e$
3. Solve for $\mathrm{x}: 3 \log _{5} \mathrm{x}-\log _{5} 4=\log _{5} 16$
4. Solve for $\mathrm{x}: \log (-3 m-1)=\log (-4 m-6)$
5. Solve for $\mathrm{x}: 5 \log _{19} 2-\log _{19} \mathrm{x}=\log _{19} 8$
