Math 3 Unit Skills Checklist

Unit 1 Modeling with Statistics

I can...
Use Normal Distributions
Describe the characteristics of a standard normal curve.
\square Use the mean and standard deviation of a data set to fit it to a normal distribution.
\square Estimate population percentages based on a normal distribution with given mean and standard deviation.

- Apply the Empirical Rule to estimate probabilities for normal distributions.
- Use calculators, spreadsheets, and tables to estimate areas under the normal curve.
\square Calculate a z-statistic (z-score) and explain its meaning in context.
\square Describe types of data sets for which it is not appropriate to fit a normal distribution.
Sampling and Study Design
\square Explain the purposes of and differences among sample surveys, experiments, and observational studies.
\square Explain how randomization relates to sample surveys, experiments, and observational studies.
\square Make inferences and justify conclusions from sample surveys, experiments, and observational studies.
\square Identify and describe types of bias that might be present in a data collection process.
\square Write appropriate, non-biased survey questions to gather data.
\square Compare different types of sampling (simple random, systematic, convenience, cluster, stratified) and describe circumstances for when it is most appropriate to use each type.

Estimate Population Parameters

\square Use data from a sample survey to estimate a population mean or proportion.
\square Explain the difference between a population parameter and a sample statistic.
\square Develop a margin of error through the use of simulation models for random sampling.
\square Determine a sample size given a set margin of error.
\square Use data from a randomized experiment to compare two treatments.
\square Use simulations to decide if differences between parameters are significant.
\square Use a random number table or random number generator on a calculator for a randomized selection process.
\square Evaluate reports based on data.

Probability Distributions and Expected Value

Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator).
\square Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game).
Apply probability concepts to real life situations.
\square Calculate the expected value of a probability simulation.
\square Determine whether a game is fair.

Unit 2 Modeling with Linear Functions

I can...
Solve systems of linear equations and inequalities
$\square \quad$ Create equations in two or more variables to represent relationships between quantities.
\square Solve systems of linear equations exactly, i.e. algebraically.
\square Solve systems of linear equations approximately by graphing the functions using technology and estimating solutions, making tables of values, or finding successive approximations.
\square Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and y $=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$.
\square Graph the solutions to a linear inequality in two variables as a half- plane (excluding the boundary in the case of a strict inequality).
\square Graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.
\square Represent constraints by systems of linear equations and/or inequalities based on a modeling context.
\square Interpret solutions of linear systems as viable or non-viable options in a modeling context.
$\square \quad$ Identify the feasible region for a set of constraints.
\square Use the Corner Principle and the Objective Function to determine the optimum solution for a set of constraints in a modeling context.

Analyze linear functions using different representations
\square Write arithmetic sequences both recursively using formal notation and with an explicit formula and use them to model situations.
\square Translate between recursive and explicit forms of an arithmetic sequence.
\square Identify the coefficients and constants of a function and interpret them in a contextual situation.
\square For a linear function that models a relationship between two quantities, I can interpret the slope and y-intercept of the graph and table forms of the function in context.
\square Relate the domain of a linear function to its graph and, when given a context, to the quantitative relationship it describes.

Use function notation
\square Evaluate linear functions for inputs in their domains.
\square Interpret statements that use function notation in terms of a context.
Build quadratic functions
\square Write a linear function that describes the relationship between two quantities.

Prove geometric theorems
Prove theorems about lines and angles:

- Vertical angles are congruent.
- When a transversal crosses parallel lines, alternate interior angles are congruent.
- When a transversal crosses parallel lines, corresponding angles are congruent.
- Points on a perpendicular bisector of a line segment are exactly equidistant from the segment's endpoints.
Prove theorems about parallelograms.
- Opposite sides are congruent.
- Opposite angles are congruent.
- The diagonals of a parallelogram bisect each other.
- Rectangles are parallelograms with congruent diagonals.

Make geometric constructions
Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.).

- Copy a segment.
- Copy an angle.
- Bisect a segment.
- Bisect an angle.
- Construct perpendicular lines, including the perpendicular bisector of a line segment.
- Construct a line parallel to a given line through a point not on the line.

Apply geometric concepts in modeling situations
Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).

Unit 3 Modeling with Polynomial Functions

I can...
Use properties and operate with rational, irrational, and complex numbers
Explain why the sum or product of two rational numbers is rational. (N-RN.3)
\square Explain why the sum of a rational number and an irrational number is irrational. (N-RN.3)
\square Explain why the product of a nonzero rational number and an irrational number is irrational. (N-RN.3)
\square Add, subtract, and multiply complex numbers. (N-CN.2)
Solve quadratic equations and graph quadratic functions
\square Solve quadratic equations with real coefficients that have complex solutions. (N-CN.7)
\square Solve quadratic equations by inspection, taking square roots, factoring, completing the square, and using the quadratic formula. (A-REI.4a,b)
\square Determine which method for solving a quadratic equation is most appropriate based on the initial form of the equation. (A-REI.4b)
\square Derive the quadratic formula using the process of completing the square. (A-REI.4a)
$\square \quad$ Recognize when the quadratic formula gives complex solutions and write them as $a \pm b i$ for real numbers a and b. (A-REI.4b)
\square Show that the Fundamental Theorem of Algebra is true for quadratic polynomials. (N-CN.9)
\square Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines. (A-SSE.3b)
\square Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context. (F-IF.8a)
\square Derive the equation of a parabola given a focus and directrix. (G-GPE.2)
Generalize concepts about quadratic functions to polynomials of higher degree
Add, subtract, and multiply polynomials. (A-APR.1)
\square Solve polynomial equations and systems of polynomial equations approximately by using technology to graph the functions they define. (A-REI.11)
\square Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph showing key features of the function defined by the polynomial. Key features include intercepts, relative maxima and minima, and end behavior. (A-APR.3, FIF.7c)
\square Prove polynomial identities and use them to describe numerical relationships. (A-APR.4)

Unit 4 Modeling with Expressions and Equations

I can...
Factor polynomials and use factoring to simplify rational expressions. (A-APR.6, A-APR.7)
\square Factor by grouping, factor perfect cubes, and factor higher order sums and differences. (AAPR.6, A-APR.7)
\square Rewrite rational expressions in different forms. (A-APR.6, A-APR.7)
\square Write $\frac{a(x)}{b(x)}$ in the form $q(x)+\frac{r(x)}{b(x)}$, where $a(x), b(x), q(x)$, and $r(x)$ are polynomials and the degree of $r(x)$ is less than the degree of $b(x)$. (A-APR.6, A-APR.7, A-APR.2)
\square Find the quotient of two polynomials by: (A-APR.6, A-APR.7)

- inspection.
- using long division.
- using synthetic division.
- using a computer algebra system.
\square Add, subtract, multiply, and divide rational expressions. (A-APR.7)
\square Calculate partial fractions from rational expressions.
\square Create and solve rational equations in one-variable and use them to solve problems. (ACED.1, A-REI.2)
\square Solve rational equations approximately by graphing the corresponding functions using technology and estimating solutions, making tables of values, or finding successive approximations. (A-REI.11)
\square Solve rational and radical equations algebraically and give examples of how extraneous solutions may arise.

Unit 5 Modeling with Advanced Functions

I can...
Exponential and Logarithmic Expressions, Equations, and Functions
Use technology to evaluate logarithms.
\square Use the properties of logs to simplify or expand logarithmic expressions.
\square Solve exponential and logarithmic equations approximately by using technology, making tables of values, or finding successive approximations.
\square Solve exponential equations algebraically using logs.

- Express as a logarithm the solution to $a b^{c t}=d$, where a, c, and d are numbers and the base b is 2,10 , or e.
- Express as a logarithm the solution to $a b^{c t}=d$, where a, c, and d are numbers and the base $b>0$.
Solve logarithmic equations algebraically using the properties of logs.
\square Solve a system of equations that include exponential and/or logarithmic functions using technology.
\square Graph exponential and logarithmic functions showing the intercepts and end behavior.
\square Compare rates of growth for different functions (linear, quadratic, exponential, and polynomial) using tables and graphs.

Inverse Functions
\square Determine whether a function has an inverse using the horizontal line test.
\square Find the inverse of a simple function algebraically, if it exists.
\square Read values of an inverse function from a graph or table.
\square Produce a function that has an inverse from one that does not by restricting the domain.

Geometric Sequences

\square Determine whether a sequence is arithmetic, geometric or neither.
\square Determine the common ratio for a geometric sequence.
\square Write a geometric sequence using formal recursive function notation.
\square Convert between recursive and explicit forms of a geometric sequence.
\square Derive the formula for the sum of a finite geometric series (when the common ratio is not 1).
\square Use the formula for the sum of a finite geometric series to solve problems (e.g. calculate mortgage payments).
\square Find a partial sum for a geometric series.
\square Find an infinite sum for a geometric series.
\square Use sigma notation to represent a geometric series.

Unit 6 : Modeling with Trigonometric Functions

I can...
Trigonometric Functions:
\square Graph sine and cosine and tangent functions by hand in simple cases and using technology for more complicated cases, showing period, midline, and amplitude, vertical shift. (F-IF.7)
\square Explain how the unit circle in the coordinate plane enables the extension of the domain of trigonometric functions to all real numbers. (F-TF.2)
\square Convert radians to degrees and degrees to radians. (F-TF.1)
\square Convert degrees expressed in standard form to degrees, minutes, seconds. (F-TF-1)
\square Create trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline. (F-TF.5)
\square Prove the Pythagorean identity $\sin ^{2}(\theta)+\cos ^{2}(\theta)=1$ and use it to find $\sin (\theta), \cos (\theta)$, or $\tan (\theta)$ given $\sin (\theta), \cos (\theta)$, or $\tan (\theta)$ and the quadrant of the angle. (F-TF.8)

Triangles and Similarity:
\square Given two figures, use the definition of similarity (in terms of similarity transformations) to decide if they are similar. (G-SRT.2)
\square Use the properties of similarity transformations to establish the AA Similarity criterion for two triangles to be similar. (G-SRT.3)
\square Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures. (G-SRT.5)
\square Prove that the base angles of an isosceles triangle are congruent. (G-CO.10)
\square Prove that the medians of a triangle meet at a point. (G-CO.10)
\square Prove that a line parallel to one side of a triangle divides the other two sides proportionally.
\square Prove the Pythagorean Theorem using triangle similarity.
\square Prove that all circles are similar. (G-C.1)

Circles:

\square Identify and describe relationships among inscribed angles, radii, and chords, including:

- The relationship between central, inscribed, and circumscribed angles.
- Inscribed angles that intercept the endpoints of a diameter are right angles.
- The radius of a circle is perpendicular to the tangent where the radius intersects the circle. (G-C.2)
\square Construct the inscribed and circumscribed circles of a triangle. (G-SRT. 5 \& G-C.3)
\square Prove that the opposite angles of a quadrilateral inscribed in a circle are supplementary. (GC.3)
\square Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius. (G-C.5)
\square Derive the formula for the area of a sector. (G-C.5)
\square Derive the equation of a circle of given center and radius using the Pythagorean Theorem. (G-GPE.1)
\square Complete the square to find the center and radius of a circle given by an equation. (G-GPE.1)

Modeling:

\square Apply geometric methods to solve design problems. (G-MG.3)

