- 4
- **a.** $\triangle ABC \sim \triangle EDF$:

 $m\angle D = 180^{\circ} - 87^{\circ} - 61^{\circ} = 32^{\circ} = m\angle B$ and $m\angle F = 61^{\circ} = m\angle C$. So by the AA Similarity Theorem, the triangles are similar.

b. $\triangle MNO \sim \triangle RTS$:

 $m\angle N = 180^{\circ} - 90^{\circ} - 42^{\circ} = 48^{\circ} = m\angle T$ and $m\angle M = 90^{\circ} = m\angle R$. So by the AA Similarity Theorem, the triangles are similar.

c. $\triangle UVW \sim \triangle YZX$ and $\triangle UVW \sim \triangle XZY$:

 $\triangle UVW$ and $\triangle YZX$ are isosceles triangles, so $m\angle U = m\angle W = 70^\circ$ and $m\angle X = m\angle Y = \frac{180^\circ - 40^\circ}{2} = 70^\circ$. So by the AA Similarity Theorem or the SAS Similarity Theorem, the triangles are similar.

d. $\triangle FGE \sim \triangle HGI$:

Since $\angle FGE$ and $\angle HGI$ are vertical angles, they have the same measure. Since $\angle F$ and $\angle H$ are right angles, they have the same measure. So by the AA Similarity Theorem, the triangles are similar.

e. $\triangle MNO \sim \triangle QPO$:

PO = 2NO, QO = 2MO, and $m \angle NOM = m \angle POQ$ (vertical angles). So by the SAS Similarity Theorem, the triangles are similar.

- **f.** $\triangle ABC$ is not similar to $\triangle PQR$ or $\triangle PRQ$ because the corresponding sides are not related by the same scale factor.
- 5
- **a.** $\triangle ABC \sim \triangle ADB$, $\triangle ABC \sim \triangle BDC$, $\triangle BDC \sim \triangle ADB$
- **b.** Student strategies will likely utilize the AA Similarity Theorem.
 - (1) $\triangle ABC \sim \triangle ADB$; use the right angles and the common angle at A.
 - (2) $\triangle ABC \sim \triangle BDC$; use the right angles and the common angle at C.
 - (3) △BCD ~ △ABD; use the right angles and identify another pair of angles having the same measure based on corresponding pairs of angles from (1) or (2) above. For example, m∠ABD = m∠ACB from (1), so m∠ABD = m∠BCD (C is the common angle).

- **a.** The length of the altitude to the hypotenuse of a right triangle is the geometric mean of the lengths of the segments into which the altitude divides the hypotenuse.
- **b.** $\frac{4}{x} = \frac{x}{9}$, so x = 6.
 - $\frac{7}{x} = \frac{x}{12}$, so $x = \sqrt{84}$.
- c. $\frac{a+b}{2} \ge \sqrt{ab}$
- **d.** i. *RT*

Since *T* is the center, \overline{RT} is a radius. So, $RT = \frac{a+b}{2}$, the arithmetic mean of a and b.

OU

Assuming from the diagram that point Q is on the circle, $\angle PQS$ is a right angle (inscribed in a semicircle). ∠PUQ is a right angle, so \overline{QU} is an altitude of $\triangle PQS$. By Part a, QU is the geometric mean \sqrt{ab} .

Alternatively, some students may use the Pythagorean Theorem and algebraic reasoning to deduce that $QU = \sqrt{ab}$ as follows.

 \overline{QU} is a leg of $\triangle PUQ$ and $\triangle QUS$.

So,
$$QU^2 = QS^2 - b^2$$
 and $QU^2 = PQ^2 - a^2$.

$$2QU^2 = QS^2 + PQ^2 - (a^2 + b^2)$$
 and $QS^2 + PQ^2 = (a + b)^2$

So,
$$2QU^2 = (a + b)^2 - (a^2 + b^2) = 2ab$$
.
 $QU^2 = ab$

Thus, $QU = \sqrt{ab}$, the geometric mean.

- ii. RT (the arithmetic mean) is the length of a radius of the circle. QU (the geometric mean) is either equal to RT or less than RT since the perpendicular distance from the diameter \overline{PS} to any point Q on the circle is less than or equal to RT, the radius of the circle.
- e. The geometric mean and the arithmetic mean are equal if and only if a = b.
- Since $(a + b)^2$ and $(a b)^2$ have terms of 2ab and -2ab, we could start by either adding or subtracting these binomials. But adding them, once the trinomials are found, will lose the *ab* term. So instead, subtract them:

$$(a+b)^2 - (a-b)^2 = 4ab$$

 $(a-b)^2 \ge 0$, so $(a+b)^2 \ge 4ab$.
 $\frac{(a+b)^2}{4} \ge ab$ and thus, since $a > 0$ and $b > 0$, $\frac{a+b}{4} \ge \sqrt{ab}$.

- - **a.** 9t = 72
 - **b.** 5(m+4) = 12m

$$5m + 20 = 12m$$

$$20 = 7m$$

$$20 = 7m$$

c. 3(y-3) = 10(2y+5)

$$3y - 9 = 20y + 50$$

$$-17y = 59$$

$$y = -\frac{59}{17}$$

$$y = -\frac{39}{17}$$

36 a.
$$x^2 - 25$$

36 a.
$$x^2 - 25$$
 b. $-6x^2 + 33x + 18$ **c.** $-3x^2 + 13x + 3$ **d.** $100x^2 - 120x + 36$

c.
$$-3x^2 + 13x + 3$$

d.
$$100x^2 - 120x + 36$$