Absolute Value Functions

Absolute Value is the distance a number is from zero on the number line.

Ex: $|-4|=4 \quad|6|=6$
Solving Absolute Value Equations
Absolute Value Equations usually have 2 answers. This is because to get rid of the absolute value bars we have to rewrite the equation as two separate linear equations.
Ex: $|x-3|=27 \quad$ Rewrite the equation as 2 different equations.
$x-3=27$ and $x-3=-27$ Think about which numbers have an absolute value of 27.

The steps to solve an absolute value equation are:

1. Isolate the absolute value first
2. Rewrite the equation as two separate linear equations
3. Solve each equation individually to get the two answers

Ex: $\quad|2 x+3|=15$

$$
2|x-7|=16
$$

Absolute Value Inequalities

Ex: If $|x| \leq 3$ that means that its distance from zero is less than 3 spaces.
What number(s) is exactly three spaces from zero?
What are other numbers that are less than 3 spaces away from zero?
Plot this on a number line:

Where do all these numbers seem to lay?
Ex: If $|x| \geq 3$ that means that its distance from zero is more than 3 spaces.

What number(s) is exactly three spaces from zero?
What are other numbers that are more than 3 spaces away from zero?

Plot this on a number line:

Where do these points seem to lie?
We call these two situations compound inequalities. These two types are called and and or statements.

And: This is an in-between situation. Your answer would be written \# < \boldsymbol{x} < \#

Or: This is the "going out" situation. Your answer would be written $\boldsymbol{x}<$ \# or $\boldsymbol{x}>$ \#

All absolute value inequalities make an and or an or statement. We know which by what the sign is.

Less Thand - Less than Absolute values make and statements

Greator - Greater than Absolute values make or statements.

Video Tutorial:
https://www.youtube.com/watch?v=BhFi7Rkyc5E

